Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology

Bharathi S. Gadad1, Wenhao Li1, Umar Yazdani1, Stephen Grady1, Trevor Johnson1, Jacob Hammond1, Howard Gunn2, Britni Curtis1, Chris English1, Vernon Yutuc1, Clayton Ferrier1, Gene P. Sackett1, C. Nathan Marti1, Keith Young2, Laura Hewitson2,4, and Dwight C. German1,2

*Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390; 2Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle, WA 98195; 3Department of Psychology, University of Washington, Seattle, WA 98195; 4Independent Consultant, Austin, TX 78711; 5Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center & Central Texas Veterans Health Care System, Temple, TX 76504; and 6Johnson Center for Child Health & Development, Austin, TX 78701

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Some anecdotal reports suggest that ASD is related to exposure to ethyl mercury, in the form of the vaccine preservative, thimerosal, and/or receiving the measles, mumps, rubella (MMR) vaccine. Using infant rhesus macaques receiving thimerosal-containing vaccines (TCVs) following the recommended pediatric vaccine schedules from the 1990s and 2008, we examined behavior, and neuropathology in three brain regions found to exhibit neuropathology in postmortem ASD brains. No neuronal cellular or protein changes in the cerebellum, hippocampus, or amygdala were observed in animals following the 1990s or 2008 vaccine schedules. Analysis of social behavior in juvenile animals indicated that there were no significant differences in negative behaviors between animals in the control and experimental groups. These data indicate that administration of TCVs and/or the MMR vaccine to rhesus macaques does not result in neuropathological abnormalities, or aberrant behaviors, like those observed in ASD.

Significance
Autism is a childhood neurodevelopmental disorder affecting approximately 1 in 70 children in the United States. Some parents believe that thimerosal-containing vaccines and/or the measles, mumps, rubella (MMR) vaccine are involved in the etiology of autism. Here we gave nonhuman primate infants similar vaccines given to human infants to determine whether the animals exhibited behavioral and/or neuropathological changes characteristic of autism. No behavioral changes were observed in the vaccinated animals, nor were there neuropathological changes in the cerebellum, hippocampus, or amygdala. This study does not support the hypothesis that thimerosal-containing vaccines and/or the MMR vaccine play a role in the etiology of autism.

www.pnas.org/cgi/doi/10.1073/pnas.1500968112

PNAS Early Edition | 1 of 6
Results

Social Behavior. Overall means and SDs for duration and frequency of social and nonsocial behaviors scored for all animals are shown in Table 2. A description of the specific behaviors measured in this study is given in Table S1. The duration and frequency of negative behaviors (e.g., Stereotypy, Rock-huddle-self-clasp, Fear-disturbed, and Withdrawal) by animals in all groups across the entire study period was very low. Behaviors that had either a significant time main effect or a time x group interaction are shown in Fig. 1 (Social: Positive Behaviors; Nonsocial: Passive Behavior; and Nonsocial: Positive Behavior). The Nonsocial Explore behavior was the most frequent of all of the behaviors measured and presented the only instance of a significant time x group interaction \[F(5, 393) = 4.17, P = 0.004\]. Follow-up contrasts indicated that the Control animals exhibited significantly more Nonsocial Explore behavior at the beginning of social living compared with the 1990s Primate \([t(393) = 3.61, P < 0.001]\), the 1990s Pediatric \([t(393) = -7.46, P < 0.001]\) the MMR \([t(393) = -2.72, P = 0.011]\) and the TCV \([t(393) = -2.48, P = 0.017]\) groups (Fig. 1). However, there were no significant differences in any behavior measured between the control and experimental groups after 6 mo of social living (at ~18 mo of age).

Brain. The neuroanatomical analyses were first performed in brains from the 1990s Primate and 2008 groups, as animals in these groups received the highest amount of EtHg exposure (1990s Primate) or the most extensive vaccine exposure (2008). Because no neuronal differences were found in either of these vaccine groups compared with the control group, no additional vaccine groups were fully studied.

Cerebellum. Abnormalities in the cerebellum have been reported in postmortem ASD brains (18, 19). Both histological and neurochemical analyses were performed on the cerebellar tissues in the present study.

Cerebellar volume and Purkinje cell number. Stereological methods were used to estimate the total number of Purkinje cells (Fig. 2) in one hemisphere. There were an average of ~800,000 cells in one hemisphere, with a density of 270 cell/mm\(^3\) and an overall volume of ~3,000 mm\(^3\). No difference in Purkinje cell number, density, or cerebellar hemisphere volume was observed in the 1990s Primate and 2008 groups compared with the Control group. We also examined Purkinje cell number in some of the animals in the TCV and MMR groups, and they were similar to that of the Control group (Table S2).

Purkinje cell size. Cell size (area) was measured in both Nissl-stained sections and in calbindin-immunostained sections. The calbindin-containing Purkinje cells were markedly larger than the calbindin-negative/Nissl-positive cells [Control mean ± SD (μm\(^2\)) = 488.5 ± 7.9 and 273.1 ± 7.7; \(n = 8\)], but there was no difference in cell size between the Control and the 1990s Primate group for either calbindin-positive cells or Nissl-positive cells, respectively (Table S3).

Cerebellar proteins. Western blots were run to measure the levels of Purkinje cell-related proteins—calbindin and GAD-67—and glial proteins—Iba1 (microglial marker) and GFAP (astrocyte marker) (Fig. 3). There were no differences in the protein levels in the 1990s Primate or 2008 groups compared with the Control group \((n = 8/group)\). Because different regions of the cerebellum were used for the protein assays, it was important to ensure that the results reflect “whole cerebellum differences.” Therefore, we measured levels of the four proteins in five different cerebellar regions and found that all of the regions had similar levels of these proteins (Fig. S1).

Table 1. Vaccination schedules used for the six groups of animals

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Vaccines administered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>16</td>
<td>None, all saline placebos</td>
</tr>
<tr>
<td>1990s Pediatric</td>
<td>12</td>
<td>Vaccines as recommended in the 1990s</td>
</tr>
<tr>
<td>1990s Primate</td>
<td>12</td>
<td>Vaccine regimen as recommended in the 1990s accelerated fourfold</td>
</tr>
<tr>
<td>TCV’s</td>
<td>12</td>
<td>All TCVs and saline placebo for MMR</td>
</tr>
<tr>
<td>MMR</td>
<td>15</td>
<td>MMR only, all others replaced with saline placebo</td>
</tr>
<tr>
<td>2008</td>
<td>12</td>
<td>Vaccine regimen recommended in 2008</td>
</tr>
</tbody>
</table>

Table 2. Duration and frequency (mean ± SD) of social and nonsocial behaviors scored for all 79 animals

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Social Duration (SD)*</th>
<th>Social Frequency (SD)</th>
<th>Nonsocial Duration (SD)*</th>
<th>Nonsocial Frequency (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive</td>
<td>7.77 (6.95)</td>
<td>0.46 (0.25)</td>
<td>1.67 (2.85)</td>
<td>0.02 (0.03)</td>
</tr>
<tr>
<td>Explore</td>
<td>3.51 (3.30)</td>
<td>0.45 (0.19)</td>
<td>164.89 (15.18)</td>
<td>17.29 (2.74)</td>
</tr>
<tr>
<td>Play</td>
<td>14.95 (5.37)</td>
<td>3.67 (1.16)</td>
<td>4.01 (2.02)</td>
<td>2.56 (0.97)</td>
</tr>
<tr>
<td>Sex</td>
<td>0.95 (1.00)</td>
<td>0.16 (0.14)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>Aggression</td>
<td>0.03 (0.07)</td>
<td>0.01 (0.02)</td>
<td>0.02 (0.12)</td>
<td>0.00 (0.01)</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>0.04 (0.14)</td>
<td>0.01 (0.03)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>Fear-disturbed</td>
<td>0.29 (0.53)</td>
<td>0.06 (0.09)</td>
<td>0.34 (0.72)</td>
<td>0.06 (0.11)</td>
</tr>
<tr>
<td>Rock-huddle-self-clasp</td>
<td>0.02 (0.15)</td>
<td>0.00 (0.01)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>Stereotypy</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
<td>0.27 (0.72)</td>
<td>0.03 (0.07)</td>
</tr>
</tbody>
</table>

Scoring was collected during 5-min focal periods collected 5 d/wk from ~12 to 18 mo of age. Additional behaviors scored but not included in the analyses included eating, drinking, scratching, and self-grooming.

*Duration reported in seconds. Frequency reported as number of events per session.
The CA1 neurons in the hippocampus have been reported to be reduced in size in postmortem brains from children with autism (18).

CA1 cell size. Cell size (area) was measured in Nissl-stained sections at a rostral (section 100), middle (section 200), and a caudal (section 300) level of the CA1 region (Fig. 4). Approximately 250–450 cells were measured per animal, each with a clear nucleus at the three levels of the nucleus. There was no significant reduction in cell area for the 1990s Primate group vs. Control group or for the 2008 group vs. Control group.

Discussion

The association between exposure to TCVs and developmental outcomes has been debated since 1999 when the US Food and Drug Administration determined that children who received multiple TCVs at a young age were at risk for exceeding the Environmental Protection Agency’s safe exposure limits for MeHg. However, the safety limits for EtHg, found in TCVs, has not been extensively tested for its relationship with childhood developmental disorders.

In postmortem brains of subjects with ASD, reductions in the number of cerebellar Purkinje cells (18, 19) and amygdala lateral nucleus cells (20), and reductions in the cell size of CA1 hippocampal cell (18) have been reported. In the present study, infant rhesus macaques received TCVs following the pediatric schedule from the 1990s (e.g., hepatitis B vaccine, diphtheria, tetanus, acellular pertussis vaccine, Haemophilus influenzae B vaccine, measles, mumps, rubella vaccine) and the expanded 2008 schedule, and were euthanized at ~18 mo of age. We examined cerebellar, amygdalar, and hippocampus neurons (n = 8–16/group), as these brain regions have been reported to be abnormal in postmortem brains from subjects with autism. There were no significant differences in Purkinje cell number or cell size, cerebellar volume, CA1 cell size, dentate gyrus volume, hippocampal neurogenesis, or lateral nucleus of the amygdala volume/cell number in animals in the 1990s Primate or 2008 groups compared with control animals.

Hippocampus. The CA1 neurons in the hippocampus have been reported to be reduced in size in postmortem brains from children with autism (18).

Neurogenesis. We sought to determine whether the birth of new dentate granule neurons was altered by the 1990s Primate vaccination schedule. Using doublecortin immunostaining, we counted the number of these neurons in five rostral-caudal sections/brain in the Controls and animals from the 1990s Primate group. There was no difference in the total number of cells per brain between the two groups (mean ± SEM for control brains: 4,180 ± 308 neurons, and 3,983 ± 368 neurons in the 1990s Primate group; n = 5/group; Fig. S2).

Dentate gyrus area. We examined the area of the granule cell layer of the dentate gyrus in the Control, 1990s Primate, and 2008 groups at eight rostral-caudal levels through the structure (Fig. 5). A two-way ANOVA was run to compare area of the dentate gyrus in these three groups across the rostral-caudal extent of the nucleus. There was no significant difference in area among the three groups (P = 0.7565); however, as expected, there was a significant effect for rostral-caudal level (P < 0.0001).

Amygdala. Abnormalities have been reported for the amygdala in ASD subjects (20). We measured the volume of the entire amygdala and of the lateral nucleus of the amygdala and the cell size and cell number for the lateral nucleus (Fig. 6). The volume of the amygdala was not significantly different in animals receiving either the 1990s Primate (n = 12) or 2008 (n = 8) vaccination schedules compared with the Controls (n = 16). In these same animals, we measured the volume and number of neurons in the lateral nucleus of the amygdala, and there was no difference among the three groups. Finally, the cell size in the lateral nucleus was not changed by either the 1990s Primate or 2008 vaccination schedules.
Our data do not support a role for TCVs in the neuropathology of ASD. A similar study examining the effects of TCVs on mouse neuropathology also reported normal hippocampal architecture with no changes in volume or numbers of neurons in the CA1 region or dentate gyrus (21).

There are limited studies on whether low-dose thimerosal via vaccination causes behavioral symptoms that resemble autism. Barile et al. (12) investigated the association between the receipt of TCVs and immune globulins early in life and neurobehavioral outcomes in children at 7–10 y of age. The data were originally created by evaluating >1,000 children and their biological mothers. They found no statistically significant associations between thimerosal exposure from vaccines early in life on six of seven variables, but there was a small but statistically significant association between early thimerosal exposure and the presence of tics in boys.

There is emerging evidence that autism may result from a maternal immune activation (MIA) during pregnancy. Several animal studies have examined the potential for prenatal viral exposure to induce aberrant behavioral outcomes in the offspring (22), and there are clinical reports of a maternal cytokine response to viral pathogens, suggesting a possible mechanism in the precipitation of these aberrant behaviors (23, 24). Maternal exposure to influenza and other viruses during pregnancy has been implicated in autism [reviewed by Zerbo et al. (25)]. In this study, pregnant dams whose infants were assigned to the 2008 group received a single influenza vaccine, nor did our previous study identify any effects of maternal exposure studies in primates have therefore used an accelerated schedule of exposure based on this developmental ratio (33, 34). It is possible that receiving multiple TCVs in an accelerated timeframe could induce neurotoxicity in infant macaques, but this was not evident in tests of early learning and cognition (17). Likewise, in the present study, we did not find neuropathological or behavioral abnormalities in animals receiving TCVs. Neurobehavioral assessments followed very detailed protocols that have been used at the primate facility for more than three decades (35, 36). There were three testers involved in the scoring of social behavior data and each passed periodic reliability training to high standards. Therefore, although it is possible that primate behavioral scoring drifted over the course of this study (5 y), this should not have affected the group comparisons. Stereological analyses can result in biased data if suitable controls are not included. In the present study all cell number and cell size measurements were made with the person doing the measurements blind to the experimental condition of the animal. In addition, at least two different people made the measurements to be certain of the validity of the data. Sometimes the neuroanatomical boundaries of nuclei are difficult to reliably define in all brain sections. To be certain of the neuroanatomical boundaries of the hippocampus CA1, the amygdala, and the lateral nucleus of the amygdala, we relied on the macaque primate brain atlas of Paxinos et al. (37), which allowed for a clear demarcation of the three brain regions. The present study focused on three brain regions found to be abnormal in postmortem ASD brains (cerebellum, amygdala, and hippocampus); however, the cerebral cortex has also been implicated in ASD neuropathology (38, 39). The cerebral cortex was not analyzed because there were no behavioral abnormalities observed in the present study nor was there neuropathology in the three regions examined. In summary, analyses of postmortem brains from ASD subjects have often found decreases in Purkinje cell number (19) and cell size. We found no changes in Purkinje cell density or cell size in treated primates, and there was no difference in cerebellar calbindin, GAD-67, GFAP, or CD11b protein levels in the 1990s Primate or 2008 groups. Amygdala deficits have also been previously reported in autism. For instance, Schumann and Amaral (20) reported a 14% decrease in amygdala lateral macaques. In contrast, exposure to low-dose TCVs via vaccination in our study did not significantly impact behavior.

There are several limitations to the present study. The 1990s Primate group was given an accelerated schedule of vaccinations due to the faster development of the visual system, pattern recognition, and object permanence in infant macaques (30, 31). It was therefore necessary to determine the appropriate timing for administering vaccines. In primates, there is a theoretical developmental ratio of 4:1, such that 4 wk of human development is comparable to 1 wk for a primate (32). Low-dose thimerosal exposure studies in primates have therefore used an accelerated schedule of exposure based on this developmental ratio (33, 34). It is possible that receiving multiple TCVs in an accelerated time frame could induce neurotoxicity in infant macaques, but this was not evident in tests of early learning and cognition (17). Likewise, in the present study, we did not find neuropathological or behavioral abnormalities in animals receiving TCVs. Neurobehavioral assessments followed very detailed protocols that have been used at the primate facility for more than three decades (35, 36). There were three testers involved in the scoring of social behavior data and each passed periodic reliability training to high standards. Therefore, although it is possible that primate behavioral scoring drifted over the course of this study (5 y), this should not have affected the group comparisons. Stereological analyses can result in biased data if suitable controls are not included. In the present study all cell number and cell size measurements were made with the person doing the measurements blind to the experimental condition of the animal. In addition, at least two different people made the measurements to be certain of the validity of the data. Sometimes the neuroanatomical boundaries of nuclei are difficult to reliably define in all brain sections. To be certain of the neuroanatomical boundaries of the hippocampus CA1, the amygdala, and the lateral nucleus of the amygdala, we relied on the macaque primate brain atlas of Paxinos et al. (37), which allowed for a clear demarcation of the three brain regions. The present study focused on three brain regions found to be abnormal in postmortem ASD brains (cerebellum, amygdala, and hippocampus); however, the cerebral cortex has also been implicated in ASD neuropathology (38, 39). The cerebral cortex was not analyzed because there were no behavioral abnormalities observed in the present study nor was there neuropathology in the three regions examined. In summary, analyses of postmortem brains from ASD subjects have often found decreases in Purkinje cell number (19) and cell size. We found no changes in Purkinje cell density or cell size in treated primates, and there was no difference in cerebellar calbindin, GAD-67, GFAP, or CD11b protein levels in the 1990s Primate or 2008 groups. Amygdala deficits have also been previously reported in autism. For instance, Schumann and Amaral (20) reported a 14% decrease in amygdala lateral

![Fig. 4. GA1 cells in the hippocampus. (A) Location of the CA1 region. (B) Neurons at a higher magnification. Red arrows point to cells with a visible nucleolus. (Inset, Right) High magnification view of two neurons, one with a visible nucleolus. (C) Cell size data for Control (n = 16), 1990s Primate (n = 12), and 2008 (n = 8) groups. [Scale bars, (A) 1 mm and (B) 25 μm.]]
nucleus cell number in postmortem ASD brains. We did not observe any changes in amygdala volume, lateral nucleus cell number, or cell volume in the 1990s Primate group. Postmortem studies (18) report smaller CA1 neurons in ASD cases, but in the present study we did not identify changes in CA1 cell size following administration of TCVs. Behaviors scored from ~13 to 18 mo of age revealed that animals spent very little time engaged in autism-related behaviors. For instance, there were virtually no instances of stereotypy, a behavior characteristic of children with autism that can be generated by administration of various CNS toxicants during this developmental period. Overall, animals in each group developed the normal repertoire of behaviors that is typical of animals of this age. Our data strongly support the conclusion that childhood TCVs do not produce ASD-like neuropathology or behavioral changes in the nonhuman primate.

Methods

Study Design. Animal procedures followed the guidelines of the Animal Welfare Act and the Guide for Care and Use of Laboratory Animals of the National Research Council (40). All experimental protocols were approved by the University of Washington Institutional Animal Care and Use Committee. A total of 79 male infant macaques were studied in six groups: (i) Control (n = 16), animals received saline injections in place of vaccines; (ii) 1990s Pediatric (n = 12), animals received vaccines following the pediatric schedule recommended in the 1990s; (iii) 1990s Primate (n = 12), animals received vaccines recommended in the 1990s but on an accelerated schedule; (iv) TCV (n = 12), animals received all TCVs but no MMR vaccines following the accelerated schedule; (v) MMR (n = 15), animals only received the MMR vaccine but no TCVs following the accelerated schedule; and (vi) 2008 (n = 12), animals received vaccines recommended in 2008 but on an accelerated schedule. Infants were assigned to a peer group of four animals, with multiple study groups being tested each year when possible (17).

Animal Husbandry and Rearing Protocols. All infants were nursery-raised following standardized protocols (41, 42). Details are provided in SI Methods.

Vaccine Dosing and Administration. The vaccines used in this study are shown in Table S4. To recreate the required TCVs, thimerosal was added to the vaccines as described previously (17). Details are provided in SI Methods and Tables S5 and S6.

Assessments of Behavior. Social behavior was evaluated daily within the home cage for each peer group from ~12 to 18 mo of age. Each home cage contained wire mesh shelves, climbing platforms, and toys. Scoring was conducted by a blinded social tester in 5-min focal periods using a coding system of mutually exclusive and exhaustive behavior codes (26). All testers were trained for 3–4 mo using the following protocol. Trainee testers score behaviors for the 5-min focal sessions along with a trained tester. This training is done for 10–15 sessions each with young infants, older infants, and young juveniles. Testers must attain a χ reliability score of 0.60 or better with their trainer with each age group being tested. All testers are retested with this procedure for reliability at 6-mo intervals. In the event of any code disagreements at or below chance levels (which was a rare occurrence), testers are retrained on the meaning of that code or codes. The three testers on this project had been social testing for 5–15 y, achieving the χ test reliability standard at a typical value of 0.80 or better. Additional details are provided in SI Methods.

Preparation of Brain Tissues. Brains underwent a hemissection with alternate hemispheres processed for immersion fixation in paraformaldehydesaline (pH 7.4). Tissues were postfixed in the same fixative for several weeks. After cryoprotection in 20% (wt/vol) sucrose/formalin/PBS (pH 7.4) for 2–3 d at 4 °C, the forebrain was blocked in the coronal plane, frozen, and cut at 60-μm thickness on a sliding microtome.

See SI Methods for details on the preparation of brain tissues, immunohistochemistry, and immunoblot analysis.

Stereological Analysis. All measurements were made using a Leica DMR microscope attached to a Q-Imaging camera with Stereo-investigator software version 9.1, which was connected to a Dell Precision 450 workstation using Stereo Investigator software (MicroBrightField).

Cell counting. For counting Nissl-positive Purkinje neurons in the cerebellum, 10 sections were examined that were spaced 1.2 mm apart from medial to lateral through an entire cerebellar hemisphere. For counting neurons in the lateral nucleus of the amygdala, seven sections were examined that were spaced 0.6 mm apart across the entire rostral-caudal dimension.

Soma size. For measuring cell size (area), two sagittal sections (sections 100 and 300) were examined in the cerebellum, and three rostral-caudal sections were examined in the CA1 region of the hippocampus (sections 100, 200, and 300).

Volume. For volume measurements of the cerebellum, amygdala, lateral nucleus of the amygdala, and dentate gyrus of the hippocampus, 10, 7, 9, and 8 sections, respectively, that were spaced 0.6 mm apart were measured (i.e., every 10th section). Further details are provided in SI Methods and Tables S5 and S6.

Statistical Analysis. ANOVA was used to compare cell sizes and areas, and nuclear volumes, and multilevel modeling for analysis of behaviors among the animal groups. P < 0.05 was considered statistically significant.
ACKNOWLEDGMENTS. We thank the staff at the Infant Primate Research Laboratory at the Washington National Primate Research Center, including Dr. Robert Munname, Dr. Keith Vogel, Cliff Astley, Dr. Tom Burbacher, Debora Gianster, Elaine Adkins, Megan Rulian, Kelly Morrisone, Caroline Kenney, Noelle Liberato, India Tindale, Kristen Watkins, Brenda Crouthamel, and Mac Durning. We thank Dr. Tricia Coakley at the University of Kentucky for preparation of thimerosal-containing vaccines (TCVs), and the California National Primate Research Center for providing pregnant dams for this study. We thank the following for their generous financial support: The Ted Lindsay Foundation, SafeMinds, National Autism Association, and the Johnson and Vernick families. This work was also supported by WaNPRC Core Grant RR0166 and CHDD Core Grant HD02274.